Allele | Panr1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mutation Type | missense | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromosome | 17 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinate | 35,200,204 bp (GRCm38) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Base Change | G ⇒ T (forward strand) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gene | Tnf | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gene Name | tumor necrosis factor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Synonym(s) | tumor necrosis factor-alpha, Tnfa, TNF-alpha, TNFalpha, Tnfsf1a, TNF alpha, DIF | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chromosomal Location | 35,199,381-35,202,007 bp (-) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MGI Phenotype |
FUNCTION: This gene encodes a multifunctional proinflammatory cytokine that belongs to the tumor necrosis factor (TNF) superfamily. Members of this family are classified based on primary sequence, function, and structure. This protein is synthesized as a type-II transmembrane protein and is reported to be cleaved into products that exert distinct biological functions. It plays an important role in the innate immune response as well as regulating homeostasis but is also implicated in diseases of chronic inflammation. In mouse deficiency of this gene is associated with defects in response to bacterial infection, with defects in forming organized follicular dendritic cell networks and germinal centers, and with a lack of primary B cell follicles. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013] PHENOTYPE: Mutations at this locus primarily affect the immune system, causing increased susceptibility to infection, failure to form splenic B-cell follicles, increased inflammation and impaired contact hypersensitivity. Homozygotes also may show metabolic defects. [provided by MGI curators] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Accession Number | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mapped | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Amino Acid Change | Proline changed to Threonine | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Institutional Source | Beutler Lab | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gene Model | not available | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AlphaFold | P06804 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PDB Structure | 1.4 A RESOLUTION STRUCTURE OF MOUSE TUMOR NECROSIS FACTOR, TOWARDS MODULATION OF ITS SELCTIVITY AND TRIMERISATION [X-RAY DIFFRACTION] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SMART Domains |
Protein: ENSMUSP00000025263 Gene: ENSMUSG00000024401 AA Change: P217T
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Predicted Effect | probably damaging
PolyPhen 2 Score 1.000 (Sensitivity: 0.00; Specificity: 1.00) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SMART Domains |
Protein: ENSMUSP00000126122 Gene: ENSMUSG00000024401 AA Change: P201T
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Predicted Effect | probably damaging
PolyPhen 2 Score 1.000 (Sensitivity: 0.00; Specificity: 1.00) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Meta Mutation Damage Score | Not available ![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Is this an essential gene? | Non Essential (E-score: 0.000) ![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phenotypic Category | Autosomal Dominant | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Candidate Explorer Status | loading ... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single pedigree Linkage Analysis Data |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Penetrance | 100% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Alleles Listed at MGI | All alleles(20) : Targeted, knock-out(13) Targeted, other(4) Spontaneous(2) Chemically induced(1) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lab Alleles |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mode of Inheritance | Autosomal Dominant | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Local Stock | Live Mice, Embryos, gDNA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MMRRC Submission | 010462-UCD | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Last Updated | 2017-04-18 4:44 PM by Katherine Timer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Record Created | unknown | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Record Posted | 2007-12-05 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phenotypic Description | ![]() PanR1 mutants display a dominant immunocompromised phenotype. Upon challenge with 1 x 105 cfu of Listeria monocytogenes (a dose sublethal for wild type animals), increased susceptibility is observed: 90% of homozygotes and 50% of heterozygotes die within seven days post-infection, compared to zero wild type mice. However, PanR1 mutants are less susceptible than Tnf-/- mice, all of which succumb to the same infection within five days.
Upon immunization, PanR1 lymphoid organ architecture is largely normal. The number of Peyer’s patches, as well as B cell follicles segregated from T cell-rich areas, and germinal center development are normal in PanR1 homozygotes and heterozygotes. Similarly normal primary follicles, germinal centers and marginal zones are observed in the PanR1 spleen. Only a moderate decrease in the cell density of the follicular dendritic cell network is found in the spleen of PanR1 mice.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nature of Mutation | ![]() 790 GCTGAGGTCAATCTGCCCAAGTACTTAGACTTT
212 -A--E--V--N--L--P--K--Y--L--D--F-
The mutated nucleotide is indicated in red lettering, and results in a conversion of proline to threonine at residue 217 (formerly residue 138) of the TNF protein.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Illustration of Mutations in Gene & Protein |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Protein Prediction |
TNF (also called TNF-α) is a protein ligand for TNF receptors 1 and 2; in its uncleaved form it is 235 amino acids in mice and 233 amino acids in humans. Human TNF was isolated and cloned independently by several groups, and was shown to be encoded by four exons, the fourth of which contains most of the coding sequence (2-4). Mouse TNF was identified separately as cachectin, a protein that suppresses lipoprotein lipase activity in cultured 3T3-L1 adipocytes (5). Mouse TNF is 79% homologous to human TNF (6). The amino acid sequences of both mouse and human TNF contain unusually long leader sequences (79 amino acids in mouse; 76 amino acids in human) at the N terminus, of which about 26 are hydrophobic (2-4;6;7) and serve to anchor the protein in the plasma membrane (8). The leader is also a propeptide, which may be cleaved from the extracellular 157 amino acid C-terminal precursor peptide (156 amino acids in humans) by a metalloprotease of the ADAM (a disintegrin and metalloprotease domain) family (9;10). This processing gives rise to the soluble, mature active form of TNF. Thus, TNF exists as both membrane-bound and soluble forms; both are biologically active and may have distinct physiological roles (11). Soluble TNF is active as a trimer (12), which crystallographic analysis has demonstrated binds in the groove between TNF receptor subunits (13-15). The TNF monomer exists as β-pleated sheet sandwich made up of 10 antiparallel β-strands with similar topology to the “jelly roll” structure observed for viral capsid proteins (14;15). Monomers form bell-shaped rigid trimers around a 3-fold axis of symmetry (Figure 2) (13-15). The association of TNF monomers is on the edge and face of neighboring subunits, respectively (14;15), and the trimer forms a central channel lined by polar and charged residues at the top and bottom of the channel, and hydrophobic residues at the middle part (13). TNF monomers contain one pair of cysteine residues, which form a disulfide bond, but are not required for biological activity (15;16).
The PanR1 mutation is a proline to threonine substitution at position 217 (formerly position 138), which exists in one of the α-helical elements connecting two β sheets and is exposed at the surface of the molecule (1). P217 is located in the turn preceding region IV, between β-strands G and H of TNF (see Putative Mechanism for discussion).
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Expression/Localization | TNF is expressed primarily by cells of the immune system, including macrophages, monocytes, dendritic cells, natural killer (NK) cells, B cells and T cells [reviewed in (17)]. It is expressed at the cell membrane as a transmembrane protein (8), and may also be processed and cleaved to form a soluble secreted protein (2-4). A larger secreted form of TNF containing ten amino acids of the most C-terminal portion of the propeptide also exists; it has no biological activity (18).
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Background |
TNFR-1 and TNFR-2 are expressed in a wide variety of cell types, and they signal through adapter proteins to activate MAPK, JNK, NF-κB and AP-1 [reviewed in (17;23)] (Figure 3). TNF signaling also activates caspases, leading to apoptosis. TNF trimers bind to homodimers of TNF receptor 1 (TNFR1) and TNFR2 (24;25), receptors also known by their molecular weights of 55 and 75 kD, respectively (26). Upon ligand binding, TNFR-1 binds to TNFR-associated death domain (TRADD) protein, which in turn recruits TNF receptor-associated factor 2 (TRAF2) and/or TRAF5, and the Ser/Thr kinase receptor-interacting protein (RIP). These interactions may occur in the context of lipid rafts, after which TNFR1 and RIP are ubiquitinated, resulting in their degradation by the proteasome pathway (27). Subsequently, activation of the TAB2/TAK1 complex activates the IKK complex to phosphorylate IκB, resulting in release of NF-κB for translocation to the nucleus and activation of gene expression. TNFR1 activates JNK through sequential recruitment of TRAF2, MEKK1 and MKK7. MAPK activation involves signaling through TRADD, RIP and MKK3. TRADD recruitment to TNFR1 also leads to the induction of apoptosis through FAS-associated death domain (FADD) protein, caspase-8 and caspase-3. TNFR2 signals via the same pathways as TNFR1, but does not signal through FADD and caspases to mediate apoptosis.
TNF is an important cytokine in the normal response to infection, yet aberrant expression of TNF can lead to a lethal state of shock (5;28). The net biological response to TNF expression depends on a balance between the proliferation- and apoptosis-promoting activities of TNF, as well as many other factors. For example, the induction of adhesion molecule expression by TNF, which favors margination and sequestration of leukocytes, may contribute to severe, systemic inflammatory effects (29;30). The effects of TNF on coagulation may also engender some aspects of septic shock (31).
The systemic toxicity of TNF is one of the main barriers to the use of TNF as an anti-cancer therapeutic. Finally, TNF has been implicated in the development of several autoimmune diseases (e.g. rheumatoid arthritis, ankylosing spondylitis, Crohn’s disease, and psoriasis; OMIM *191160) and antibodies against TNF can be useful in treating some cases of each of these diseases. TNF has been specifically implicated in TNF receptor-associated periodic syndrome (TRAPS, also known as Familial Hybernian Fever; OMIM #142680), an autosomal dominant syndrome characterized by episodes of fever and severe localized inflammation (32). These autoinflammatory symptoms may be caused by increased TNFR1 signaling due to impaired downregulation of membrane TNFR1 (32).
On the other hand, despite its involvement in both acute and chronic inflammation, TNF is essential for normal immune function. It is required for the normal development of secondary lymphoid organs. Tnf-/- mice are reported to have reduced numbers and sizes of Peyer’s patches and defective splenic architecture (33-35). During infection, TNF is a key mediator of innate resistance to certain microbes such as Listeria monocytogenes (36;37) and mycobacteria (38), first noted when mice were treated with anti-TNF antibodies. Tnf-/- and Tnfr1-/- mice are highly susceptible to infection with L. monocytogenes, rapidly dying from infection (33;39). As predicted by the passive immunization studies (36-38) and by the protective effects of soluble forms of TNF receptors (40), Tnf-/- and Tnfr1-/- mice are resistant to LPS-induced septic shock (33;39).
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Putative Mechanism | The crystal structures of TNF (13-15) and the related Lta molecule (41), and mutational analysis of TNF (42-45) suggest that there are four main regions involved in ligand-receptor interaction which are mainly located in the loops connecting β-strands, and reside in the intersubunit grooves of the TNF trimer. These regions (region I, residues 32-34; region II, residues 82-89; region III, residues 115-117; region IV, residues 141-146) are required for the full biological activity of TNF (42;43). In particular, Y141 and E146 are highly likely to mediate receptor binding (13;43). Notably, the TNF point mutant A145R is reported to form trimers with wild type TNF, but inhibits TNF-mediated caspase and NF-κB activation by sequestering normal, productive trimers from activating receptor (44;46). The PanR1 mutation is located in the loop connecting β-strands G and H, in close proximity to ligand-receptor interaction region IV. Consistent with these data, the PanR1 mutation disrupts TNF binding to the receptor, possibly by disrupting the receptor binding interface of the TNF trimer by replacing P138 (now P217 according to Genbank record NM_013693) with a more bulky threonine residue. At the same time, the mutation does not appear to disrupt TNF trimer formation; these trimers are estimated to have <0.1% of wild type TNF trimer activity (1).
PanR1 mice have generally less severe phenotypes than Tnf-/- mice. PanR1 mice are less susceptible to L. monocytogenes infection than Tnf-/- mice, and have nearly normal secondary lymphoid organ development, unlike Tnf-/- mice. As discussed in (1), these disparities may be attributed to strain differences between PanR1 (mixed C57BL/6J x 129/Sv background) and Tnf-/- mice (C57BL/6J background). In addition, Lta, Ltb and Tnf are closely linked on mouse Chromosome 17, and gene targeting of the Tnf locus could potentially affect the transcription of Lta or Ltb, both of which contribute to the immune response to L. monocytogenes (47) and to secondary lymphoid organ development (48). Finally, trimers containing the TNF P138T mutant may provide enough signaling capacity to support increased resistance to L. monocytogenes and proper secondary lymphoid organ development in PanR1 compared to Tnf-/- mice.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Primers | Primers cannot be located by automatic search. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Genotyping | PanR1 genotyping is performed by amplifying the region containing the mutation using PCR, followed by sequencing of the amplified region to detect the single nucleotide transition. The same primers are used for PCR amplification and for sequencing.
Primers
PanR1(F1): 5’- AAGTGGAGGAGCAGCTGGAGTG-3’
PanR1(R1): 5’-CTGAAGACAGCTTCCCACACTG -3’
PCR program
1) 94°C 2:00
2) 94°C 0:30
3) 60°C 0:20
4) 72°C 1:00
5) repeat steps (2-4) 35X
6) 72°C 5:00
7) 4°C ∞
The following sequence of 947 nucleotides (from Genbank genomic region NC_000083 for linear DNA sequence of Tnf) is amplified:
1443 aagtggag gagcagctgg agtggctgag ccagcgcgcc aacgccctcc tggccaacgg
1501 catggatctc aaagacaacc aactagtggt gccagccgat gggttgtacc ttgtctactc
1561 ccaggttctc ttcaagggac aaggctgccc cgactacgtg ctcctcaccc acaccgtcag
1621 ccgatttgct atctcatacc aggagaaagt caacctcctc tctgccgtca agagcccctg
1681 ccccaaggac acccctgagg gggctgagct caaaccctgg tatgagccca tatacctggg
1741 aggagtcttc cagctggaga agggggacca actcagcgct gaggtcaatc tgcccaagta
1801 cttagacttt gcggagtccg ggcaggtcta ctttggagtc attgctctgt gaagggaatg
1861 ggtgttcatc cattctctac ccagccccca ctctgacccc tttactctga cccctttatt
1921 gtctactcct cagagccccc agtctgtatc cttctaactt agaaagggga ttatggctca
1981 gggtccaact ctgtgctcag agctttcaac aactactcag aaacacaaga tgctgggaca
2041 gtgacctgga ctgtgggcct ctcatgcacc accatcaagg actcaaatgg gctttccgaa
2101 ttcactggag cctcgaatgt ccattcctga gttctgcaaa gggagagtgg tcaggttgcc
2161 tctgtctcag aatgaggctg gataagatct caggccttcc taccttcaga cctttccaga
2221 ttcttccctg aggtgcaatg cacagccttc ctcacagagc cagcccccct ctatttatat
2281 ttgcacttat tatttattat ttatttatta tttatttatt tgcttatgaa tgtatttatt
2341 tggaaggccg gggtgtcctg gaggacccag tgtgggaagc tgtcttcag
Primer binding sites are underlined; the mutated C is highlighted in red.
PanR1 genotyping can also be done by PCR amplification followed by Hpy188I restriction digestion of the amplified region.
Primers
PanR1(F2): 5’-CGTCAGCCGATTTGCTATCT -3’
PanR1(R2): 5’-GGGGGCTCTGAGGAGTAGAC -3’
PCR program
1) 94°C 2:00
2) 94°C 0:30
3) 55°C 0:30
4) 72°C 0:30
5) repeat steps (2-4) 35X
6) 72°C 7:00
7) 4°C ∞
The following sequence of 326 nucleotides (from Genbank genomic region NC_000083 for linear DNA sequence of Tnf) is amplified:
1615 cgtcag
1621 ccgatttgct atctcatacc aggagaaagt caacctcctc tctgccgtca agagcccctg
1681 ccccaaggac acccctgagg gggctgagct caaaccctgg tatgagccca tatacctggg
1741 aggagtcttc cagctggaga agggggacca actcagcgct gaggtcaatc tgcccaagta
1801 cttagacttt gcggagtccg ggcaggtcta ctttggagtc attgctctgt gaagggaatg
1861 ggtgttcatc cattctctac ccagccccca ctctgacccc tttactctga cccctttatt
1921 gtctactcct cagagccccc
Primer binding sites are underlined; the novel Hpy188I site created by the PanR1 mutation is highlighted in gray; the mutated C is shown in red text.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References |
19. Coley, W. B. (1893) The treatment of malignant tumors by repeated inoculations of erysipelas; with a report of ten original cases, Am. J. Med. Sci. 105, 487-511.
20. Shear, M. J., Turner, F. C., Perrault, A., and Shovelton, J. (1943) Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Baccillus prodigiosus) culture filtrate, J. Natl. Canc. Inst. 4, 81-97.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Science Writers | Eva Marie Y. Moresco | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Illustrators | Diantha La Vine | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Authors | Sohpie Rutschmann, Kasper Hoebe, Bruce Beutler |